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Predicting the Past
By: Dr. Lance Smith & Dr. Damoon Robatian

1 Introduction

Historical VaR (HVaR) has become a standard measurement of risk. Many firms now require a full twelve 
years of prices (plus data from further back such as the Great Recession of 2008–2009). However, this 
requirement introduces a conundrum: what do we do when a company has not been around for a full twelve 
years? In fact, fully half of today’s US equities are less than twelve years old. The table below displays the 
distribution by birth year, going back to 2008. 

FIGURE 1
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The point is, that no matter what the HVaR window, there is likely a need to create synthetic returns. How 
this is actually done can affect the outcome of your risk calculations. The usual solution is to fallback to a 
benchmark index using a current beta to substitute for the nonexistent data. In the US that would typically 
be the S&P 500 Index. However, this introduces some unintended consequences: the returns that are being 
fabricated will be perfectly correlated with each other, and more importantly the synthetic returns will not 
adequately capture the tail risk.

1 Introduction (continued)

We can also recast this information in terms of the HVaR window: For a given lookback period of HVaR, 
what percent of the US equities were first issued during that window?

FIGURE 2
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1 Introduction (continued)

Proxying returns using a single factor

Let’s write the return, , in the usual way as  with X and ε uncorrelated. Then (ignoring the 
mean),

So that in particular the standard deviation is

In fact, in terms of , we have that = . In practice, ordinary regression will yield an  
between 0.2 and 0.7, so that in any case the standard deviation of the proxy returns are at least 30% less 
than those of the actual returns. Now suppose for the moment that the returns are all normally distributed. 
Then as the following graph makes clear, the proxy return distribution simply cannot properly capture the 
tail behavior. But that is where HVaR lives. And so if this approach cannot even work for the case of normal 
returns, there is no hope for it in the real world.

FIGURE 3



PREDICTING THE PAST  /  TSIMAGINE  5

2 The Idea

A better solution is to determine, if you can, a multi-factor representation of the missing returns. This 
approach goes like this:

	• Determine a set of factors that collectively best approximate the returns of the target stock 
	 – The factors themselves need to have the full twelve years+ of history

	• Regress the factor returns against the target returns over whatever period is available to determine 
the weights (a.k.a. multivariate betas). We imposed a cap at the past five years.

	• When computing HVaR, fall back to the factor returns only when there are no target returns available, 
although one can choose to overwrite the target returns as well.

Note: The collection of factors can be tailored to each target stock. There is no requirement to use the 
same factors across the entire portfolio. This freedom enables us to achieve the best fit possible.

3 Implementation

We begin with a comprehensive list of factors — namely all US equities that have existed for the 12+ years 
of interest, numbering approximately 11,000. After making adjustments for multicollinearity, this number 
reduces to about 500. Then for a youthful equity, we choose the five that are most highly correlated and 
then perform a LASSO regression [Tibshirani, 1996] against these factors utilizing the available time series 
data to further reduce, if possible, the number of factors. The correlation screening together with the 
LASSO are called sure independence screening (SIS), which is known to improve high-dimensional regression 
analysis [Fan and Lv, 2008]. Significance of the regularization term (the tuning parameter) is adjusted based 
on a 5-fold cross-validated mean squared error (MSE). For the details of the variable selection, see section 
6.3. However this algorithm still retains the same deficiency of the example above, in that R2 will still be 
significantly less than 1, and hence the tails will not be adequately captured.

4 Chasing the Tails

We can more closely fit the tails if we emphasize the larger returns by reweighting. The details of this 
reweighting, and the corresponding modifications to the regression scheme are explained in the Appendix.
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5 How good is the fit?

We first designed a test specifically addressing the tails. For each equity we can compute two numbers  
— the left 1% and the right 1% tails. That is, using the historical returns (details in Appendix), we compute 

 (0.01) and  (0.99). We then compute the same for the simulated returns, and then create a scatter 
plot so that we can compare the two. In this visualization, equities for which the two match perfectly would 
lie upon the line  The next two plots show the results across all US equities that have been issued 
after Jan 1, 2008 — a universe of about 11,000. We only show the results for the left tail; the right tail is 
similar.

Unsurprisingly, almost every single point lies above the line  (Figure 4). This is a reflection of the 
lower volatility of the simulated returns, as discussed previously. Now compare the five factor weighted fit 
(Figure 5): Fully 96% of the equities fall within the red bands, centered along  

FIGURE 4
S&P Beta Fit

Lower 1% Tail

FIGURE 5
Weighted 5 Factor Fit

Lower 1% Tail
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5 How good is the fit? (continued)

5.1 Example: WH.N (Wyndham Resorts)

Figure 6 compares the three distributions 
for WH.N returns using the test data.

As WH.N began trading about four years 
ago, and the test data consists of 20% 
randomly chosen dates, there are only 158 
data points, hence the wobbliness in the 
Figure 6 graph. Let’s zero in on the left tail.

FIGURE 6

FIGURE 7
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5 How good is the fit? (continued)

Of course, the data is sparse, but suppose 
we now enrich the two simulated 
distributions by using the entire 14 years 
of history going back to 2008/01/01. 

We see that the simulated distribution for 
WH.N going back to 2008 continues to 
closely track the 1% threshold for WH.N. 
Is this a fluke? The scatter plot below 
suggests not.

Some explanation is in order. This scatter 
plot compares the lower tail of the 5-factor 
sims for each equity using two datasets: 
test data vs data back to 2008. This shows 
that in general there is not significant tail 
dissipation when going to the longer time 
period. That is, the longer dated synthetic 
distributions continue to maintain their  
“fat tails”.

FIGURE 8

FIGURE 9
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6 Some sample HVaR calculations

The results of the regression for each equity were then loaded into its risk environment, making it available 
to be invoked to supply missing returns whenever needed for an HVaR calculation.

6.1 Example: A Long portfolio of equities

This graph shows that when the data is falling back, the weighted factor HVaR does a much better job at 
maintaining the tails that contribute to HVaR. (For the initial four year look-back period in all three cases 
the actual data is being used, so that the graphs coincide in that region). 

FIGURE 10
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Appendix

6.2 Capturing the Tails

The usual regression approximates the returns by regressing against a collection of factors; the LASSO 
adds on attempts to screen out the insignificant ones. Ultimately we arrive at an expression:

with  Now it is clear that is likely to be significant,

which introduces a problem: if the goal is to better model the tail probabilities, how can we do this if the 
variance of the simulated returns (i.e. the factor portion) is significantly less than the actual variance of 
the data?

In our approach, we reweight the returns so that tail events have a higher weighting and will therefore be 
better modeled. This will necessarily give rise to a higher residual error, and so we will not be as close to 
the target for moderate returns. That is OK, because our ultimate goal is to estimate HVaR, which lives in 
the tails. 

FIGURE 11

(1)
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6.2.1 Weights

Suppose that  are the factor returns. Let  be a fixed real. For every  
define

where  denotes the norm.The weight  magnifies the effect of the larger returns. The case 
 is the base, equally weighted case. Figure 11 illustrates various weighting schemes for a sample 

of 1,000 data points.

6.2.2 Scale Invariance

We note that the weights are independent of scale. That is, if the returns are all rescaled (by the standard 
deviation, for example), the weights remain the same. Put another way, the choice of an optimal value of  
    is independent of the standard deviation, and is more influenced by the relative shape (fat tails) of the 
distribution.

6.3 Variable (Factor) Selection

Our initial collection of factors consisted of every US equity that has existed since 2008, numbering 
about 11, 000. We apply two types of selection criteria to reduce this number, in the following order:

1.	 Variance inflation factor (VIF),

2.	 Weighted sure independence screening (WSIS) [Fan and Lv, 2008], which itself comprises two 
components:

a)	 Screening via weighted marginal correlations, and

b)	 Variable selection using a regularization method.

Each of the above criteria are explained in the coming sections.

(2)



PREDICTING THE PAST  /  TSIMAGINE  12

6.3.1 Variance Inflation Factor

Due to the strong multicollinearity among the factors, passing them directly to LASSO causes trouble 
in selecting significant factors. For this reason, we first reduce the number of the factors to about 500 
applying the so-called variance inflation factor. It quantifies the severity of multicollinearity in an ordinary 
least squares (OLS) regression analysis. VIF provides a score illustrating how much the variance of a 
regression coefficient estimate is “inflated” as the result of collinearity among the covariates. Consider 
the linear model introduced by Equation (1). VIF for every independent variable  can be calculated in 
two steps as follows:

1.	 Regress  on the rest of the explanatory variables (excluding the response) in an OLS model, i.e., 
 
 
 
with  being the error term.

2.	 Calculate the VIF factor for  
 
 
 
where  is the squared of model (3).

A high VIF is interpreted as significant multicollinearity. In practice, 5 or 10 might be used as a threshold, 
i.e., if VIF( ) exceeds the threshold,  is regarded as highly collinear with the rest of covariates.

Given the number of factors we have, the computation of VIF is time consuming. Hence, we perform the 
reduction itself in two steps:

1.	 First, all factors are divided into batches of approximately 500 equities, and in each batch we keep 
only the stocks with VIF less than 10.

2.	 Second, all the remaining factors from all batches undergo another round of reduction altogether. 
However, this time any factor with VIF more than 5 is removed.

Finishing the two steps above, we end up with 538 factors.

(3)

(4)
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6.3.2 Weighted Sure Independence Screening

Next, we explain the two components of the weighted sure independence screening.

(a) Screening
The main objective of feature screening in high-dimensional data is to achieve a massive decrease in 
the number of the independent variables. In general, the screening step of SIS ranks all features using 
the marginal correlation coefficient  and keeps only the highest correlated covariates. We apply 
the same idea with a slight modification. This modification is aligned with our objective of detecting the 
distribution tails better. That is, instead of the conventional Pearson correlation coefficient, we utilize a 
weighted correlation coefficient to measure the correlation between the response and each explanatory 
variable. Let U = (U1, . . . ,UN) and V = (V1, . . . , VN) be two vectors. For a specific value of  we will 
let  denote the weighted inner product of U and V using the p-weightings, i.e.,

where  is defined by Equation (2). We define the weighted correlation of U and V as

To complete the screening phase, it is necessary to fix the value of . In fact, we treat  as a tuning 
parameter and pick the optimal  through a 5-fold cross-validated LASSO regression, for each individual 
response. The details of the tuning procedure are explained in sub-section 6.4. In the meantime, let us 
assume that the optimal value of  is known. Therefore, one can apply the weighted correlation, Equation 
(5), to rank the covariates according to the magnitude of their correlation with the response. Eventually, we 
retain only the five factors (out of 538) corresponding to the first five highest correlations.

(b) Selection by Regularization
After the large-scale reduction of the covariate numbers in the screening phase of SIS, any regularization 
method, such as LASSO, SCAD, or Elastic Net, can be used for variable selection. Here, LASSO is the 
method of our choice [Santosa and Symes, 1986, Tibshirani, 1996]. Before we break down the LASSO-

(5)
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based selection, recall that we assumed that the optimal value of  is known. Now, given a response, the 
LASSO regression is run on the five covariates obtained in the screening step to further reduce the number 
of factors by shrinking some of the regression coefficients to zero. However, the LASSO is also weighted 
because of the very same reason as for the correlation. More accurately, instead of the residual sum of 
squares (RSS) in the LASSO cost function, we use the weighted RSS. That is, the objective function to be 
minimized has the following form:

where  is the weight vector defined by Equation (2). Note that, in the regular LASSO,  = 1/N, for all i. 

The Shoehorn Approach
We can trick the standard approach into solving the weighted problem by simply multiplying the target 
returns and the factor returns as well, by . Thus existing Python tools can be easily utilized by simply 
massaging the inputs.

6.4 Tuning 

First, consider a set of candidate values for , namely, {0, 0.5, 1, 1.5, 2, 2.5, 3, 5}. Since capturing the tails 
are of primary importance, the optimal  value should result in regression coefficients  that best retrieve 
the extreme quantiles like the 1% and 99% quantiles. Now, fix a stock’s daily returns as the response. 
Randomly, split the data into training and testing sets. We used 80% of the data for training and the 
remaining 20% for testing. For every candidate value of  repeat the following steps:

1.	 Find the 5 factors performing the WSIS screening on the training set.

2.	 Estimate the regression coefficients  through LASSO variable selection. At this point, we apply 
5-fold cross validation for training the LASSO and tuning its tuning parameter . Obviously, this 
step is also completed by using the training set only.

3.	 Having estimated s, estimate the returns  and, consequently, the quantiles of interest 
 Note that, in our implementation, we focused on the 1% and 99% percentiles,  

i.e., .

Let  denote the corresponding vector of quantiles calculated using the observed 

(6)
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responses . In our case,  Now, the optimal  is the one that minimizes

where  is an arbitrary vector with

In fact,  adjusts the relative importance of each quantile. We assigned identical weights to the target 
quantiles, i.e.,  = (0.5, 0.5).
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